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Limitation of Operational Definitions

William Delaney1
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Fundamental ideas underlying the definition of the properties of physical systems
by means of measurement procedures in the paradigm of operationalism are
introduced and discussed. Minimal criteria that such procedures might be expected
to satisfy are suggested and a fundamental limitation to operationalism is
pointed out.

1. INTRODUCTION

Bridgman (1927) presents a lucid discussion of the merits of the opera-
tional definition of physical quantities, being careful to also point out certain

difficulties associated with such an approach. Among the many important

ideas he presents, the following are especially relevant for the purposes of

this paper:

1. The fundamental importance of (measurement) operations in defining

physical quantities is elucidated in the statement ª the concept is synonymous
with the corresponding set of operationsº (author ’ s italics).

An advantage of operationalism is its capacity to clarify the nature of

physical quantities. For example, various quantities commonly referred to as

ª propertiesº of objects are revealed to actually be relations between the object

and its observer (such distinctions being of crucial importance in certain

relativistic and quantum mechanical contexts).
2. The problem of defining such operation sets is discussed in general

terms for several fundamental quantities (distance, time, energy, etc.). Signifi-

cant difficulties are evidenced, especially in the discussion concerning the

definition of fundamental quantities like distance and time at different (micro-

scopic, ª everyday,º and astronomical) spatial and temporal scales. A particu-
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larly incisive remark is made about the nonexistence of a criterion for

determining if a given object is a clock (Bridgman, 1927, p. 72).

3. The above-mentioned operation sets are characterized as being neces-
sarily unique, implying that quantities defined by different such sets would

have to be understood to be different and consequently they would have to

be denoted by different names (possible examples being fundamental quanti-

ties like distance or time at different scales). The operations themselves are

characterized as necessarily being effectively executable. The possibility that

some operations might be ª mentalº ones is not excluded.

The operational approach to defining properties as characterized in the

above is commented on in Section 2, and some possibly significant properties

of the above-mentioned operation sets are suggested. Section 3 presents a

more formal discussion of operationalism, including a demonstration of an

apparent limitation of that approach. Section 4 contains concluding remarks.

2. CHARACTERISTICS OF OPERATIONAL DEFINITIONS

With reference to point 1 above, it seems to the present author that the

term ª operation setº is best interpreted as ª operation sequence,º that is,

ª procedureº . Indeed this interpretation seems obvious in various parts of
Bridgman (1927) and the word ª procedureº is even used. In any case, ª proce-

dureº is the interpretation assumed in the following, and frequent reference

will be made to ª measurement procedures.º Such procedures are understood

to be analogous to those used for computers, in that they specify operations

to be performed and the order in which they must be performed. However,

the operations are not limited to be computational ones; they can be any
operation that a physical system can perform. It is understood that such a

procedure operates on physical systems and is executed by a physical system.

Indeed, a reference to a measurement procedure in the following should be

considered to be also a reference to the system executing it. Reference is

typically made to the procedure instead of to its executor because the proper-

ties under discussion are typically those which the procedure has independent
of which system executes it.

With reference to the difficulties alluded to in point 2 above, it is

remarkable that still no procedures seem to exist for the operational definition

of properties. Perhaps this is just due to the difficulty of the problem. If this

is the case one might consider various options before giving up on such an

important and interesting idea as operationalism. One approach might be to
try to define procedures for quantities which are ª simplerº than distance,

time, etc.

However, before actually trying to realize measurement procedures it

might be useful to first try to better understand the problem by defining
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general properties of such procedures. In point 3 above the properties of

uniqueness and effective executability were mentioned. It is not difficult

to specify various other properties that seem logically necessary, such as
the following.

x Completeness, which refers to the capacity of a measurement proce-
dure to define a property using the same procedure over a whole range of

conditions. The difficulty of defining properties under conditions spanning

different spatial and temporal scales can be recognized as a difficulty in

realizing the relevant measurement procedure in such a way that it exhibits

an adequate level of completeness.

x Finiteness, which refers to the capacity of a measurement procedure
to produce a result (property value) in a finite time. Such a requirement

would seem to exclude the possibility of procedures that measure infinite

magnitudes and ones that can repeat operations indefinitely.

Considering the remark about ª mentalº operations in point 3 above, an

operation that seems to have mental aspects is computation . Indeed some

measurement procedures (especially those employed for defining properties
at microscopic and astronomical scales) are characterized by a significant

amount of computation, in contrast with some others (at the ª everydayº level)

that seem, at first sight, to be devoid of computational operations. As an

example of the latter case Bridgman (1927) cites the use of a ruler to measure

distance (as the number of times the ruler must be laid down end to end so

as to cover the distance). It must be pointed out, however, that counting itself
can be viewed as a computational operation, so computation may well be

much more characteristic of measurement than is apparent at first sight.

3. MEASUREMENT PROCEDURE CRITERIA AND
LIMITATIONS

This section presents a more formal treatment of measurement proce-

dures and the properties they define in the context of the paradigm of opera-

tionalism as characterized in the preceding.

For greater clarity and preciseness it is convenient to employ terminology

analogous to that used to define mathematical functions. Thus, a measurement
procedure is characterized by a triple (DOMAIN, CODOMAIN, FUNC-

TION) where

DOMAIN is its domain of applicability

CODOMAIN is its codomain (the values it can produce)

FUNCTION means what it does
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In line with the operational point of view being followed, it is assumed

that the domain of measurement procedures is the set of all physical systems

(PHYSICAL-SYSTEMS), i.e.,

DOMAIN 5 PHYSICAL-SYSTEMS

In abstract terms the FUNCTION of a measurement procedure is to determine

property values for physical systems, and thereby to define the property itself.

It is assumed that a valid definition of a property by means of a measurement

procedure requires that the measurement procedure satisfy the following
criterion: A measurement procedure always yields a value for a system having

the property defined by the procedure and never yields a value for a system

which does not have that property.

So characterized, a measurement procedure individuates a subset of

PHYSICAL-SYSTEMS, and the different possible values in its CODOMAIN

determine a partition of that subset into equivalence classes.
The yielded property value must be produced in a finite time. Precisely,

ª yielding a property valueº is understood to include two distinct aspects:

determining the value and ª returningº the value, this latter term meaning the

outputting of information identifying the value as the measurement result in

an unambiguous and clearly recognizable form (in a finite time). If a procedure
does not return a value under certain conditions, it will be said to ª never

return a valueº (meaning never under those conditions). To take these consid-

erations into account, the above-stated criteria that a measurement procedure

must satisfy may be better expressed as:

x A measurement procedure determines a value and returns it for any

system having the property defined by the procedure and never returns a
value for any system which does not have that property.

The subset of systems for which the measurement procedure determines and

returns a value corresponds to the property it defines.

The above criteria a measurement procedure must satisfy are not intended

as a definition of the concept of ª measurement procedure.º Indeed such
procedures are physical systems and, in the operational paradigm, their prop-

erty of ª being a measurement procedureº should be defined by a measurement

procedure. The FUNCTION of the relevant procedure M can be described

as follows: for any S in PHYSICAL-SYSTEMS, M determines whether it is

a measurement procedure and returns

M(S ) 5 1 if S is (i.e., executes) a measurement procedure

(on systems comprising a nonempty

subset of PHYSICAL ±SYSTEMS)

M(S ) 5 0 otherwise
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In words, the values in the CODOMAIN of M partition the set of physical

systems into two classes, the class of physical systems that are measurement

procedures [M(S ) 5 1] and the class of physical systems that are not measure-
ment procedures [M(S ) 5 0].

Although nothing has been assumed about the internal workings of M,

it has a serious problem which can be evidenced by studying another proce-

dure, G, constructed using M, whose FUNCTION can be specified as follows:

for a specified physical system S (any S in PHYSICAL-SYSTEMS)

if M(S ) 5 0, return 0 as value of G(S )

if M(S ) 5 1, never return a value

If one now considers G(G), one concludes the following:

x G(G) is a measurement procedure (it determines and returns a value)

if, according to M, it is not a measurement procedure.

x G(G) is not an measurement procedure (it does not determine and
return a value) if, according to M, it is a measurement procedure.

This logical contradiction implies that G cannot exist, but since its existence

depends only on the existence of M, then M cannot exist either. That is, no

procedure can exist for the operational definition of the property of being a

measurement procedure (the above demonstration is analogous to certain

presentations of the proof of the nonexistence of an algorithm capable of
deciding if an arbitrary Turing machine will halt given an arbitrary input).

4. CONCLUSIONS

The above result concerning the nonexistence of the procedure M contra-

dicts the basic tenet of operationalism, i.e., that all properties of physical

systems can be defined by means of measurement procedures (which are

themselves physical systems).
It is important to realize that the above conclusions cannot be avoided

by trying to formulate a denial that G is a physical system (on the basis of

the way it is constructed). Obviously G has the same nature that M does,

and M must be a physical system in the paradigm of operationalism.

Another way to try to avoid the above conclusions would be to reject

the above criteria for being a measurement procedure. To reject the idea that
such a procedure must determine a value seems absurd. To reject the idea

that it must clearly identify what entity constitutes that value seems very

dangerous, since that could open the door to various kinds of ambiguities.

It should also be noted that the above demonstration depends on the criteria



1762 Delaney

essentially only in the construction of G, which does rely on the assumption

that M does determine and return a value.

Of course, the above demonstration does not deny the possibility of
realizing measurement procedures for deciding if certain specific physical

systems are measurement procedures. The problem is that no one procedure

is sufficient and, from an operational point of view, multiple procedures

imply multiple meanings (and thus names for ª measurement procedureº ).
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